
Architectures for Dependable Modern Microprocessors

Nikolaos Foutris1

1 Department of Informatics & Telecommunications,

 University of Athens, Athens, Greece,

nfoutris@di.uoa.gr

Abstract. Technology scaling, extreme chip integration and the compelling

requirement to diminish the time-to-market window, has rendered

microprocessors more prone to design bugs and hardware faults.

Microprocessor validation is grouped into the following categories, based on

where they intervene in a microprocessor’s lifecycle: (a) silicon debug: the first

hardware prototypes are exhaustively validated, (b) manufacturing testing: the

final quality control during massive production, and (c) in-field verification:

runtime error detection techniques to guarantee correct operation. The

contributions of this thesis are the following: (1) Silicon debug: We propose the

employment of deconfigurable microprocessor architectures along with a

technique to generate self-checking random test programs to avoid the

simulation step and triage the redundant debug sessions, (2) Manufacturing

testing: We propose a self-test optimization strategy for multithreaded,

multicore microprocessors to speedup test program execution time and enhance

the fault coverage of hard errors; and (3) In-field verification: We measure the

effect of permanent faults performance components. Then, we propose a set of

low-cost mechanisms for the detection, diagnosis and performance recovery in

the front-end speculative structures. This thesis introduces various novel

methodologies to address the validation challenges posed throughout the life-

cycle of a chip.

Keywords: Dependability, silicon debug, testing, error, bug

1 Introduction

The evolution of semiconductor technology and computer architecture has

radically transformed our world throughout the last decades. However, the

combination of technology scaling and extreme chip integration, along with the

compelling requirement to diminish the time-to-market window, has rendered

microprocessors more prone to design bugs and hardware faults. The goal of this

thesis is to provide solutions to the validation challenges posed from the

microprocessor products throughout the life-cycle of a chip.

Microprocessor validation is grouped into the following categories, based on where

they intervene in a microprocessor’s lifecycle: (a) silicon debug: the first hardware

1 Dissertation Advisor: D. Gizopoulos, Associate Professor

mailto:nfoutris@di.uoa.gr

prototypes are exhaustively validated, (b) manufacturing testing: the final quality

control during massive production, and (c) in-field verification: runtime error

detection techniques to guarantee correct operation. The contributions of this thesis

are the following:

• Silicon debug: We propose the employment of deconfigurable

microprocessor architectures along with a technique to generate self-checking random

test programs to (a) avoid the time- and the resource-consuming simulation step, (b)

triage the redundant debug sessions, and thus to accelerate silicon debug [2] [4].

• Manufacturing testing: We propose a self-test optimization strategy for

multithreaded, multicore microprocessors to (a) speedup test program execution time,

(b) enhance the fault coverage of hard errors, and thus to make manufacturing testing

more efficient [1].

• In-field verification: We measure the effect of permanent faults

performance components. Then, we propose a set of low-cost hardware-based

mechanisms for the detection, diagnosis and performance recovery in the front-end

speculative structures [5] [7] [10].

The share of silicon debug in the overall microprocessor chips development cycle

is rapidly expanding. The validation step that detects the vast majority of design bugs

is the one that stresses the silicon prototypes by applying huge numbers of random

tests. Despite its bug detection capability, this step is constrained by the extreme

computing needs for random test program simulation. Moreover, another major

bottleneck and source of “noise” of this phase is that large numbers of random test

programs fail due to the same or similar design bugs. This redundant behaviour adds

long delays in the debug flow since each failing random program must be separately

examined, although it does not usually bring new debug information. This thesis

addresses both challenges of silicon debug. A self-checking methodology is proposed

for generating random test programs (exploiting the ISA diversity property) that

detect bugs by comparing the results of equivalent instructions combined with a

technique to triage the failing test programs into categories with common failure

modes. The proposed framework: (a) improves bug detection efficiency, (b) reduces

the redundant debug session, and thus accelerates silicon debug.

When a sufficient level of coverage is reached the microprocessor design enters the

production stage, where a last quality control is performed to detect any

manufacturing defect. Functional self-testing forms an integral part of manufacturing

test flow due to its at-speed testing and non-intrusive nature. Multithreaded (MT)

SBST methodology proposes a novel self-test optimization strategy for multithreaded,

multicore microprocessor architectures (OpenSPARC T1 microprocessor model).

The proposed self-test program execution optimization aims to: (a) take

maximum advantage of the available execution parallelism provided by multiple

threads and multiple cores, (b) preserve the high fault coverage that single-thread

execution provides for the processor components, and (c) enhance the fault coverage

of the thread-specific control logic. MT-SBST methodology significantly speeds up

self-test time, while at the same time it improves the overall fault coverage.

The combination of design complexity, shrinking time-to-market windows, and

wear-out effects increases the failure probability of modern design and leads

microprocessor manufactures to integrate numerous in-field verification mechanisms.

Trends such as low-voltage operation and process scaling are expected to

significantly increase the rate of faults experienced by silicon. Their impact on a

core's non-cache SRAM structures has not been accurately quantified. Faults in these

structures will not affect correctness, but can cause severe performance degradation

and variability among otherwise identical cores. We first classify and quantify the

impact of permanent faults in the performance components of modern

microprocessors. Then, we propose a low-cost microarchitectural mechanism that

exploits the self-verification property of predictors to achieve performance recovery.

This thesis introduces various novel methodologies to address the validation

challenges posed throughout the life-cycle of a chip. The proposed techniques make

the validation process more efficient and are easily applicable to the existing

industrial flow.

2 Silicon debug

Aggressive technology scaling and extreme chip integration, combined with the

compelling requirement to diminish the time-to-market window have rendered

microprocessors more prone to design bugs than ever. As a result, silicon debug – the

process of validating and debugging a new microprocessor design on its first silicon

prototype chips – has evolved to a critical, time-consuming, and labour-demanding

step in a chip’s development flow [11]. Recent trends [16] show that the time spent

from the arrival of the first silicon prototype chip to high volume production ramping

up is steadily growing, while the ratio between the size of the design and the debug

teams has reached 2:1. Thus, an efficient silicon debug approach that promptly detects

and eliminates the design bugs before volume production can make the difference

between success and failure of a microprocessor product.

Silicon debug starts with the arrival of the first prototypes and often continues well

after a product has gone to volume production. A comprehensive suite of test

programs covering many test scenarios are executed on the prototype chips to detect

bugs that can be anything from logic/functional bugs, electrical or process-related

bugs to mask-related manufacturing defects [14]. Subsequently, for each failing test

program (one that does not execute correctly due to a bug), separately, a systematic

debug phase is performed by the debug engineers to identify the root cause of the

failure.

Massive application of automatically generated random test programs on the

prototype microprocessor chips is one of the most effective parts of silicon debug

[13]. Despite its bug detection efficiency, this step is constrained by extreme

computing needs for random tests simulation to extract the bug-free memory image

for comparison with the actual silicon image. Another major bottleneck and source of

“noise” in this phase is that large number of random test programs fail due to the

same or similar design bugs. This redundant behaviour prolongs silicon debug phase

since each failing random test program must be exclusively root-cause analysed,

although it does not usually bring new debug information. Finally, volume production

may be further prolonged due to bugs that lurk behind other bugs. These blocking

bugs stall the execution of the subsequent tests, since no workaround exists and

therefore additional re-spins are needed.

This work introduces a silicon debug methodology for microprocessors with two

major objectives: (a) increase coverage by applying more tests to silicon prototypes;

and (b) reduce validation time by triaging the redundant failing random test programs.

The methodology does so by exploiting (1) the inherent diversity of microprocessor

instruction sets to eliminate the time consuming simulation step by employing self-

checking tests; and (2) the property that allows hardware components to be

deconfigured without compromising microprocessor’s functional completeness to

bucketing the redundant failing test programs. Figure 1 shows an overview of the

flow.

A. Test generation: The fundamental first step is the identification of ISA diversities,

i.e. microprocessor instruction equivalences, and the population of the ISA diversity

database. The database contains for each instruction a list of equivalent instruction

sequences. Then, the flow is fed with the random test programs (original RiTs)

already generated (but not simulated) by sophisticated random test program

generators that all microprocessor manufactures internally use [11] [12]. We pair each

original RiT with an Equivalent RiT to generate an enhanced RiT. An eRiT is

automatically generated from an original RiT replacing its instructions with their

equivalent counterparts that have been stored in the ISA diversity database. Finally, a

checking code compares the stored results of the original RiT and the eRiT to identify

mismatches. A mismatch indicates a potential silicon bug.

B. Bug detection: Combining the self-checking method, with a hardware replay

mechanism (Figure 2– right part) enables the extraction of as much as possible useful

debugging information regarding the bug detection capability of each test program

and provides a fast workaround solution to bypass blocking bugs. The hardware

mechanism records the failing comparisons when mismatches are detected and

replays the execution of the original RiT by replacing the execution of the offending

instruction with its equivalent. In particular, the “replacement” is done on-the-fly

using the program counter of the store instructions saved in buffers store-addr and

estore-addr. During the first run of the enhanced RiT, the checking code finishes with

the mismatches between the set of k responses of the original RiT and the eRiT stored

in mids-queue (mismatch id queue), with mid between 0 and k. If mid = 0 (i.e. the

queue is empty), then there is no mismatch and the chip passes the enhanced RiT;

debug continues with the next RiT.

If queue is not empty (i.e mid > 0) the enhanced RiT will be replayed mid times,

because store[mid] and estore[mid] instructions generated different results (Figure 3 –

instr.16). The key functionality of the mechanism is that when a mismatch is detected

between store[i] and estore[i], during replay, instead of executing the “buggy” code

between store[i–1] and store[i], the processor executes the equivalent code between

estore[i–1] and estore[i]. The mismatch has been bypassed, subsequent responses are

not corrupted and if the remaining test can detect another mismatch (more bugs) it is

allowed to do so. A list of mismatch identifiers (mids) is the log information our

method provides. An integer m in the log (an entry in the mids-queue) means that: (a)

the mth pair of stores produced a mismatch, i.e. store[m] and estore[m] produced

different results; (b) the code between store[m–1] and store[m] has been replaced by

the code between estore[m–1] and estore[m] and the original RiT continued. These

two pieces of information can help the debug engineer identify the offending

instructions and work on them.

test

scenario

random test generator

random test

program

enhanced random test

generator

ISA diversity

database

output: enhance random test

Step A: test generation

Step B: bug detection

execute random test

Step C: Triage

mismatch

detected?

Y

N

replay

test program

output: failing test programs &

offending instructions

estimate component

bug susceptibility

deconfigure component

execute random test

mismatch

detected?

N

Yreplay

test program

output: deconfigured components

replace

instructions

Figure 1: The proposed silicon debug flow.

C. Triage: As soon as bug detection phase finishes, hardware-assisted triage begins.

Hardware triage is assisted through the integration of the triage mechanism (Figure 2–

left part). For each failing self-checking random test, the triage mechanism selects the

component that is most susceptible to contain a bug and deconfigures it in the next

execution of the failing random test program. This process is repeated until the test

program is correctly executed (i.e. the bug has been “masked” by the sequence of

deconfigurations). All test programs that eventually execute correctly after the same

sequence of deconfigurations are grouped into the same “bucket”. Intuitively, the bug

that causes the failure most probably resides within the components that have been

deconfigured before the test executes correctly.

The outcome of this step is a list of components that have been deconfigured and is

stored in the component buffer (each entry of this array saves the id of the

component). The interpretation of the list provides the following triage-related

information: (a) Empty list. The random test program was correctly executed. No

failure detected; no debug action required in the morning, (b) List contains a set of the

deconfigurable components. The random test program was correctly executed after

components {Ck, Cn, Cm, Cq} have been deconfigured. The list of components

indicates a “bucket” of failing test programs. All test programs ending with the same

list of deconfigurations are grouped together; and (c) List contains all deconfigurable

components. The random test program fails even after all deconfigurable components

are turned off. No triage grouping information; the random test must be separately

debugged.

At the end of the multiple hardware-enabled test program re-executions, the contents

of the component buffer and the mismatch identifier queue (grey colored boxes in

Figure 2) are downloaded along with the remaining memory image of the prototype

on the host machine (i.e. dedicated server that controls the entire validation campaign)

for further analysis by the debug engineers. It should be noted that the proposed

methodology detects bugs (both logical and electrical) with the following

characteristics: (i) their excitation does not depend on the operational conditions

(temperature, voltage, frequency); and (ii) they continue to manifest themselves

despite the deconfiguration of components from the overall design.

bypass network

Profiler

replay mechanism

s
to

re
-a

d
d
r.

e
s
to

re
-a

d
d
r.

store counter

mids-queue

program counter

bypass control

h
it

m
o
n
it
o
r

triage mechanism

deconfiguration unit

activity

array

component

buffer

pipeline

deconfiguration controller

Figure 2: The proposed hardware mechanism for silicon debug acceleration.

To evaluation the proposed silicon debug methodology, we set up the tool chain on

top of the PTLsim [18] architectural simulator as presented in [4].

First set of experiments: We compare our methodology, in terms of bug

efficiency, with the traditional flow (mismatches are only detected off-line comparing

the memory dumps of the actual execution with the expected memory dump contents

from simulation) and with two other self-checking validation approaches [15] [17].

For each of the three methods, we use the same original RiT (4K instructions) as input

and we enhance it according to the basic idea of each method. Our methodology

detects all 1K bugs injected into the simulator (Figure 3) because we stopped

generation of more RiTs when all the injected bugs were detected. The traditional

flow detects 928 bugs (coverage 90.54%). This difference, against the proposed

method, is explained by the activation of more hardware areas by the equivalent RiT.

The approach of [17] detects 903 bugs (coverage 88.10%) because there are cases

where an instruction cannot be reversed. Furthermore, the flexibility of the ISA

diversity concept to deploy equivalent instructions which activate totally different

paths in processor’s logic provides us with the ability to avoid bug masking

conditions. Finally, [15] detects 210 bugs (coverage 20.49%) because it can only

detect electrical bugs, since a logic bug will act in an identical way in both original

and duplicated instruction. For a complete silicon debug plan (trillions of

instructions), we expect our approach to have the same bug efficiency as the

traditional flow since our bug detection capability relies on the original RiTs which

are carefully generated by sophisticated industrial random generators. The advantage

of our method is that by avoiding the time-consuming simulation step it is able to

apply many more RiTs and thus detect potential bugs much earlier.

Traditional

RIT-based flow

Reversi QED Proposed

928

903

210

1025

Detected Bugs
100%

20.49%

88.10%
90.54%

Figure 3: Design bug coverage for the four different methods.

Second set of experiments: The proposed method refines the debug information

using the hardware replay mechanism. During our bug injection experiments, we

observed that the average number of different bugs that were detected by a single RiT

is about 4. To verify the effectiveness of our approach on refining debug information,

we activate the hardware replay mechanism in our infrastructure (the triage

mechanism is disabled) and conducted a second set of experiments: we injected all the

bugs at the beginning of the simulation and executed all RiTs with the highest bug

detection capability. The proposed hardware mechanism detected all the injected bugs

(through bypassing the offending instructions with their equivalents in the replay

executions). This is a significant benefit of the proposed framework compared to the

traditional flow which requires more tests to detect the same number of bugs.

Third set of experiments: To demonstrate the benefits of the triage mechanism

on test program triaging, we have selected a set of 10 hard-to-detect logic bugs from

the set of injected bugs distributed among the deconfigurable modules of PTLsim

simulator (we characterize them as hard-to-detect because all 10 bugs are detected by

a small number of test programs; smaller than the average case). Furthermore, all 10

design bugs are together injected from the beginning of the bug injection campaign,

as an attempt to model more accurately the silicon debug environment where all bugs

can co-exist in the prototype chip. We repeated the experiments only for a subset of

the initial random test programs that are affected from them; these are 341 test

programs.

Table 1 presents details about the selected design bugs. The first column is the id of

each bug, while the second column gives the microprocessor component in which the

bug resides. Issue Queue1 and Issue Queue2 refer to different components in the

microprocessor design (Issue Queue1 for the integer cluster, and Issue Queue2 for the

floating point cluster). The third column shows the number of test programs affected

by each design bug when injected individually (from the first set of experiments) and

the last column provides a short description.

Bug

ID
Component

Failing Test

Programs
Bug Description

1 Conditional Predictor 45
Update fetch address on branch

misprediction fails

2 RAS 10 Incorrect push to stack

3 Issue Queue1 32

Dependent uop issued, while

producer is waiting in ready-to-

write-back state

4 Issue Queue2 21
Entry not flushed on a branch

misprediction

5 Floating Point Unit 50 Incorrect rounding operation

6 Data cache 17 Valid array logic; invalid data read

7 Load Queue 47 Load to store aliasing

8 Store Queue 29 Store data before address gets valid

9 Reorder Buffer 48 Commit entry more than once

10 Reorder Buffer 42 Invalid control bit activation

Total 341 -
Table 1: Details of 10 hard-to-detect design bugs.

Figure 4 shows the results for this set of experiments. The horizontal axis presents

the different “buckets” of failing random test programs that are formed when the

proposed methodology is applied. The vertical axis shows the number of failing test

programs of each bucket.

Figure 4: Failure categories for the 341 failing test programs.

The application of the proposed methodology with the deconfiguration

mechanisms enabled results in a triaging of the 341 random test programs in 9

different failure categories shown in Figure 4:

• Failure categories 1, 2, 3, 4, 6, 7, and 8 group the test programs that are

affected exclusively from the design bugs in one of the following microprocessor

components: Conditional Predictor, RAS, Issue Queue1, Issue Queue2, Data Cache,

Load and Store Queues, respectively. As a result, when the deconfiguration controller

turned the corresponding microprocessor component off, the bug is “masked” and the

test program execution is correct.

• Failure category 5 groups 53 random test programs, while the expected

number of test programs affected from a design bug in the FPU unit is 50. The reason

for that is that these particular test programs (3 from Issue Queue2) were able to

detect more than one design bugs (design bugs injected both in the Issue Queue2 and

the FPU). As a result, only when both buggy microprocessor components were

deconfigured the re-execution of the test program results in a correct execution.

• Failure category 9 includes the test programs that fail due to bugs 9 and 10

injected in the Reorder Buffer’s logic. The deconfiguration mechanisms were unable

to distinguish these design bugs into different categories, since both of them were

inside the deconfiguration granularity of the ROB structure. Specifically, these bugs

reside in neighboring entries of the re-order buffer and manifest themselves as invalid

dependency re-dispatching when a mis-speculation happens. Therefore, the same

sequence of deconfiguration results in masking both bugs..

Clearly, the proposed flow has a profound impact on the effectiveness of silicon

debug and greatly accelerates root cause analysis by removing the “noise” of

redundant random tests that fail due to the same underlying bug (the 341 initial debug

sessions are reduced to only 9 in the last set of experiments).

3 Conclusions

Today, the pervasiveness of microprocessors, the most complex and immensely

powerful application of electronics, in our society goes far beyond the wildest

imagination. The same path that is leading technologies toward these remarkable

achievements is also making them increasingly unreliable posing a threat to our

society. Silicon technology process scaling trends, modern architecture complexity

and the compelling requirement to diminish the Time-to-Market threaten to create a

“validation wall”. As a result, semiconductor industry and academic researchers must

explore radical solution and develop innovative techniques to address the

dependability challenges of the current and the forthcoming microprocessors. This

thesis introduced novel methodologies to address the validation challenges posed

throughout the life-cycle of a microprocessor.

Microprocessor validation is grouped into three categories, based on where they

intervene in a microprocessor’s lifecycle: (a) silicon debug: the first hardware

prototypes are exhaustively validated, (b) manufacturing testing: the final quality

control during massive production, and (c) in-field verification: runtime error

detection techniques to guarantee correct operation. This thesis introduces various

techniques to tackle the challenges of microprocessor validation targeting to: (a) make

the dependability process more efficient; and (b) be easily applicable to the existing

industrial flow. The contributions of this thesis are as follows:

• Silicon debug: The share of silicon debug in the overall microprocessor chips

development cycle is rapidly expanding due to the ever growing design complexity

and the limited throughput of pre-silicon verification methods. Massive application of

short random test programs on the prototype microprocessor chips is one of the most

effective parts of silicon debug. Despite its bug detection capability, it is constrained

by extreme computing needs for random test programs simulation to extract the bug-

free memory image. Another major bottleneck and source of “noise” in this phase is

that large numbers of random test programs fail due to the same or similar design

bugs. This redundant behavior adds long delays in the debug flow since each failing

random test program must be separately examined, although it does not usually bring

new debug information. We proposed the employment of self-checking random test

programs along with a deconfigurable microprocessor architecture to avoid the time-

consuming simulation step, triage the redundant debug sessions and thus accelerate

silicon debug. To do so, we exploited the inherent diversity found in all popular

Instruction Set Architectures (ISAs) and the ability to deconfigure hardware modules

without affecting the functional completeness of a design. Detailed evaluation of the

method on an x86 microprocessor model demonstrated its effectiveness in

accelerating silicon debug.

• Manufacturing testing: We presented an efficient multithreaded (MT) SBST

methodology that optimizes self-test time taking maximum advantage of thread-level

parallelism while at the same time enhances the self-test program error detection

capability on the thread-specific control logic of the processor. The methodology

contributed to the effective application of SBST in manufacturing testing. Our

experiments on OpenSPARC T1 revealed that the proposed methodology improved

significant test execution time at both the core level (3.6 times) and the processor

level (6.0 times) against single-threaded execution, while at the same time it improves

fault coverage. Compared with a straightforward multithreading approach, it reduces

the self-test time at both the core level and the processor level by 33% and 20%,

respectively. Overall, our methodology guarantees high stuck-at fault coverage (88%

for the entire processor, more than 1.5M logic gates), which is the highest coverage

ever reported in the literature by a software-based functional test methodology in such

a complex industrial microprocessor.

• In-filed verification: Aggressive technology scaling along with low voltage

operation exacerbates the likelihood and rate of hard faults not only in large SRAM

arrays (such as cache memories), but also in non-SRAM microprocessor structures.

Some of the largest non-cache SRAM structures support speculation such as the

branch predictor tables, the branch target buffers, and the data prefetcher. Faults in

these structures will not affect correctness, but can cause severe performance

degradation and variability among otherwise identical cores. We accurately classified

and quantified the performance impact of hard faults in non-SRAM structures over a

set of CPU benchmarks. To do so, we applied a statistically safe fault injection

campaign for single and multiple faults a modified version of the cycle-accurate x86

architectural simulator PTLsim running the SPEC CPU2006 suite. Our evaluation

revealed significant differences in the effect of faults and their performance impacts

across the components as well as within each component. In particular, we

demonstrated that a very large fraction (44% to 96%) of hard faults in these

components leads to performance fluctuation, Furthermore, faults in the data

prefetcher degrade IPC by up to 26%, compared to fault-free operation, while faults

on the branch prediction unit reduce IPC by more than 16%, respectively. Moreover,

we found that faults in these components can substantially increase the performance

variability across identical cores. Finally, we proposed low-cost microarchitectural

techniques to diagnose predictor faults and recover the performance loss. Our

techniques exploited the self-verification property of predictors to achieve

performance recovery at lower cost than comparable techniques. We found that our

solutions can recover almost all performance loss and virtually eliminate performance

variability among cores.

The research outcomes of this thesis open the door to several future directions.

Future systems architectures must be designed to facilitate hardware validation. In

particular, future solutions should have adhered to the following guideline principles:

(a) low-power, (b) negligible area overhead, (c) scale with design complexity; and (d)

highly automated. In the silicon debug domain, future research should focus on the

automation and standardization of the design bug detection and root-cause analysis

process. Furthermore, this thesis demonstrated the effectiveness of software-based

techniques in accelerating manufacturing testing and guaranteeing a high level of fault

coverage. This may be an indication that future microprocessors should devote

valuable silicon estate in hardware hooks that enable the at-speed, low-cost testing.

The growing demand for high-performance computer systems pushes computer

architects to integrate numerous performance mechanisms in the microprocessor

designs. However, functional correctness is prioritized over performance correctness.

This work revealed that faults in performance components can lead to noticeable

performance loss and variability in otherwise identical cores. Therefore, future

designs must integrate mechanisms to continuously monitor the system performance

health and applying contingency actions. Finally, a vital future research direction is to

bridge the gap between silicon debug, manufacturing testing and in-field verification

techniques through the development of cross-cutting solution that will operate

throughout the entire life-cycle of a microprocessor.

The vital challenge of future technologies is to build dependable systems. This

thesis proposed various novel techniques to make the validation process, throughout

microprocessor life-cycle, more effective in terms of bug/error detection efficiency,

resource- and time-budget. We hope that the contributions presented in this thesis will

advance the research in manufacturing dependable microprocessor architectures and

will find applicability in future commercial microprocessor products.

References

[1] N.Foutris, M.Psarakis, D.Gizopoulos, A.Apostolakis, X.Vera and A.Gonzalez, MT-SBST:

Self-Test Optimization in Multithreaded Multicore Architectures, In IEEE International

Test Conference (ITC), 2010.

[2] N.Foutris, D.Gizopoulos, M.Psarakis, X.Vera and A.Gonzalez, Accelerating

Microprocessor Silicon Validation by Exposing ISA Diversity. In ACM/IEEE

International Symposium on Microarchitecture (MICRO), 2011.

[3] T.Ramirez, E.Herrero, N.Axelos, J.Carratero, N.Foutris, D.Sanchez, X.Vera, Mitigating

Lower Layer Failures with Adaptive System Reconfiguration, International Symposium

on Mixed Design of Integrated Circuits and Systems (MIXDES), 2012.

[4] N.Foutris, D.Gizopoulos, X.Vera and A.Gonzales, Deconfigurable microprocessor

architectures for silicon debug acceleration. In ACM/IEEE International Symposium on

Computer Architecture (ISCA), 2013.

[5] N.Foutris, D.Gizopoulos, J.Kalamatianos and V.Sridharan, Assessing the Impact of Hard

Faults in Performance Components of Modern Microprocessors, In IEEE International

Conference on Computer Design (ICCD), 2013.

[6] M.Kaliorakis, N.Foutris, D.Gizopoulos and M.Psarakis, Online error detection in

multiprocessor chips: A test scheduling study, IEEE International On-Line Testing

Symposium (IOLTS), 2013.

[7] N.Foutris, D.Gizopoulos, J.Kalamatianos and V.Sridharan, Measuring the Performance

Impact of Permanent Faults in Modern Microprocessor Architectures, IEEE International

On-line Testing Symposium (IOLTS), 2013.

[8] M.Kaliorakis, M.Psarakis, N.Foutris and D.Gizopoulos, Parallelizing Online Error

Detection in Many-core Microprocessor Architectures, Joint Euro-TM/Median Workshop

on Dependable Multicore and Transactional Memory Systems (DMTM), 2014.

[9] M.Kaliorakis, M.Psarakis, N.Foutris and D.Gizopoulos, Accelerated Online Error

Detection in Many-core Microprocessor Architectures, In IEEE International VLSI Test

Symposium (VTS), 2014.

[10] N.Foutris, D.Gizopoulos, A.Chatzidimitriou, J.Kalamatianos and V.Sridharan,

Performance Assessment of Data Prefetchers in High Error Rate Technologies, In IEEE

Silicon Errors in Logic – System Effect (SELSE), 2014.

[11] M.Abramovici, P.Bradley, K.Dwarakanath, P.Levin, G.Memmi, D.Miller. "A

reconfigurable Design-for-Debug Infrastructure for SoCs", In ACM/IEEE Design

Automation Conference (DAC), 2006.

[12] M.Behm, J.Ludden, Y.Lichtenstein, M.Rimon and M.Vinov, "Industrial Experience with

Test Generation Languages for Processor Verification", In ACM/IEEE Design

Automation Conference (DAC), 2004.

[13] T.Bojan, F.Igor and M.Robert, Intel’s Post Silicon Functional Validation Approach, IEEE

High Level Design Validation and Test Workshop (HLDVT), 2007.

[14] International Technology Roadmap for Semiconductors, 2009.

[15] T.Hong, Y.Li, S-B.Park, D.Mui, D.Lin, Z.A.Kaleq, N.Hakim, H.Naeimi, D.S.Gardner and

S.Mitra, “QED: Quick Error Detection Tests for Effective Post-silicon Validation, In IEEE

International Test Conference, 2010.

[16] Y-C.Hsu, F.Tsai, W.Jong and Y-T Chang, “Visibility Enhancement for Silicon Debug”, In

ACM/IEEE Design Automation Conference (DAC), 2006.

[17] I.Wagner and V.Bertacco, “Reversi: Post-silicon Validation System for Modern

Microprocessors”, In IEEE International Conference on Computer Design (ICCD), 2008.

[18] M.Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural

Simulator”, In IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2007.

